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Abstract— Eddy currents due to magnetic flux perpendicular to
the sheets of a lamination iron core are represented on a number
2D slice models, which are embedded in a 3D model of the
entire device. The choice of a different spatial resolution enables
to attain a advantageous convergence of the discretisation error
for the eddy-current power losses, compared to the standard
modelling technique using an anisotropic surrogate material.

I. INTRODUCTION

Eddy-current effects in laminated iron cores have a signif-
icant influence on the behaviour and performance of elec-
trotechnical devices. We consider a local coordinate system
(α, β, γ) where γ is perpendicular to the lamination sheets,
whereas α and β are aligned with the plane in such way that
the tangential component Hα of the magnetic field strength H
and the tangential component Jβ of the electric current density
J are oriented along α and β. Two types of eddy-current paths
are distinguished. The eddy currents J = (0, Jβ , Jγ) closing at
the lamination edges and caused by the major magnetic field
components H = (Hα, 0, 0) have been studied extensively,
e.g. [1]–[4]. Here, we focus on the eddy currents due to the
magnetic field component Hγ perpendicular to the laminates,
typically occurring at the ends of the lamination stack. A wide-
spread technique relies upon an anisotropic surrogate material
derived from the parameters of the contributing materials and
the fill factor of the stack [5], [6]. This technique has been
successfully applied to machines [7] and transformers [8]. In
[9], a coupling is set up between an overall 3D model and
the 3D model of an individual lamination, which is capable
of considering both types of eddy-current effects at the same
time. This paper proposes an alternative to that and couples
an overall 3D model with a number of 2D slice models
which account for the complicated eddy-current paths in the
lamination plane.

II. MULTI-SCALE FORMULATION AND DISCRETISATION

At a 3D model of the entire device (Fig. 1), a magnetoqua-
sistatic (MQS) formulation in terms of the magnetic vector
potential (MVP) is discretised by standard edge elements on
tetrahedra or hexahedra (Fig. 2a). The eddy-current effects due
to magnetic flux components aligned with the laminated plane
are taken into account by the low-frequency approximation

H = f(B) +
σd2
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dB

dt
, (1)

where f() represent the BH-characteristic, B is the magnetic
flux density, σ the conductivity and d the sheet thickness
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Fig. 1. Laminated core with cross-section Γstack and length `stack;
homogenised slice with length `(k); control volume Γm ⊗ `(k).
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Fig. 2. (a) Lowest order edge function αj on a tetrahedral grid and (b)
lowest order longitudinal edge function τj on a trigonal prism.

[1]. A higher-order approximation [2], [10] could be built in
as well. The lamination stack is subdivided in a number of
slices covering a (non-necessarily integer) number of sheets
(Fig. 1). A triangulation of the stack cross-section is extruded
to establish a trigonally prismatic grid for each of the slices. At
each slice, the MQS formulation in terms of the γ-component
of the electric vector potential (EVP) is discretised by edge
functions aligned with γ (Fig. 2b). The discrete coupled system
of equations reads Aνξσ −V(k) 0
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where Aνξσ = Kν + sKξ + sMσ and A
(k)
ρµ = K

(k)
ρ + sM

(k)
µ .

The second and third system part is repeated for every slice k.
Kν is the magnetic diffusion matrix, Kξ is a diffusion matrix
incorporating (1), Mσ the conductance matrix, _a the degrees
of freedom (DoFs) for the MVP and

__

j s the discretisation for
the applied currents. Kρ is the electrokinetic diffusion matrix,
Mµ the permeance matrix and

_
t
(k) the DoFs for the EVP

in slice k. The submodels are coupled through the discrete
source magnetic field
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h
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s . The magnetic flux density B =
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Fig. 3. 3D model and 2D slice models of a single-phase transformer. The
rectangles indicate control volumes.

∇ × A = µHs + µT is forced to match between models
in a weak way. For that purpose, a set of control volumes
Ω

(k)
w = Γw⊗ [0, `(k)] with Γw a patch in the lamination cross-

section and `(k) the length of slice k, is defined. The third
matrix equation in (2) is obtaining by weighting the equality
for B by piecewise constant vectorial shape functions defined
on Ω

(k)
w and oriented along the γ-direction.

The formulation is easily extended to the nonlinear case,
i.e. Kν , Q

(k)
µ , M

(k)
µ and Λ

(k)
µ need to be linearised. When the

stack cross-section is not invariant along γ, it is a good idea
to define a conformal transformation such that the approach
of extruding a triangular grid can be maintained. The expected
gain of this formulation is related to the fact that the 3D and
2D grids can be refined independently. The 3D grid is refined
such that the variation of the magnetic flux density along γ
is well resolved, whereas the 2D grid is chosen such that the
skin depth along α- and β-directions is accommodated.

III. APPLICATION

The eddy-current losses at no-load operation of a single-
phase transformer are calculated. As a reference, 3D model
with a decreasing mesh size has been constructed, meshed
and solved by the CST EMStudio software [11] (Fig. 3a).
Thereby, an appropriate anisotropic surrogate model is imple-
mented. The new approach makes use of the same 3D model
and adds 2D slice models of the lamination stack of which
the cross-section is meshed by Triangle [12] (Fig. 3b). A
convergence test (Fig. 4) shows that the convergence order for
the magnetic energy and the power losses is the same for both
approaches. For the approach with embedded 2D slice models,
the power losses converge with a larger convergence factor
than for the standard technique. The convergence, however,
does not get as good as the convergence for the magnetic
energy. Eddy currents as they appear in two places in the
lamination stack are plotted in Fig. 5.

IV. CONCLUSION

Eddy currents in the lamination plane can be accurately
described on additional 2D models of slices of the lamination
stack. Embedded in an overall 3D model, this dedicated
modelling technique succeeds in substantially improving the
convergence factor, as is shown for the example of a simple
single-phase transformer.

Fig. 4. Convergence of the relative error on the magnetic energy (Wmagn)
and the eddy-current power loss (Ploss) w.r.t. the number of 3D grid cells.
Comparison between a standard model with anisotropic surrogate material
(-standard) and the improved model with 2D slice models (-improved).
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Fig. 5. Eddy-current distribution in the lamination stack: (a) at the front side
and (b) 5.3 mm behind the front side of the lamination stack.
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